Early Science Learning Resources, Tools, and Activities to Help Support Children’s Science Learning

October 20, 2017
1:30-5:30 pm
Introductions and Ice Breaker

- Find 3-5 people you do not know and find
 - Something that is similar about the work you do
 - Something that is different about the work you do
 - A fun fact that you can’t tell by appearances
Overview of the Session

- Background of the Collaborative for Early Science Learning
- Museumtools.org
- Justification and Partnerships, Teacher Trainings, Family Engagement
- Implementation plan overview
- Help us answer the questions posted around the room
Justification

- Why museums?
 - Community Resource and Stakeholder
 - Skilled at engaging adults and children
 - What can your institution offer?
 - Professional Development Plans
 - Family Engagement
 - Museum Access Programs
Why Science?

- Science is developmentally valuable for young children
- Young children are already developing ideas on how the world works through hands-on exploration
- Young children learn like scientists
- Process skills vs Content
Justification

How do you see children practice science process skills in your exhibits or programs?
Mind in the Making- Alison Gopnik
Justification

How do you see children practice science process skills in your exhibits or programs?
Justification

- Why focus on early childhood programs?
 - Science and STEM PD is often requested by teachers
 - Adults often feel uncomfortable with science
 - Low assessment scores from teachers
 - Science learning covers literacy and math
 - Science process skills align with early childhood standards and assessment goals
Justification

Before Teacher Trainings

After Teacher Trainings
Head Start Early Learning Outcomes Framework

Connecting Process Skills to Assessments

<table>
<thead>
<tr>
<th>Science Process Skill</th>
<th>COR (Child Observation Record) Assessment Items</th>
<th>Teaching Strategies Gold Assessment Items</th>
<th>CLASS Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observing</td>
<td>• Observing and Classifying
• Natural and physical world
• Patterns</td>
<td>• Shows curiosity and motivation
• Uses scientific inquiry skills
• Attends and engages
• Recognizes and recalls</td>
<td>• Connects Concepts
• Integrates with previous knowledge
• Real world applications
• Related to students real lives
• Active participation
• Focused attention
• Follows students lead</td>
</tr>
<tr>
<td>Predicting</td>
<td>• Experimenting, predicting and drawing conclusions</td>
<td>• Uses scientific inquiry skills
• Shows curiosity and motivation
• Shows flexibility and inventiveness in thinking</td>
<td>• Prediction/Experimentation
• Brainstorming</td>
</tr>
<tr>
<td>Measuring</td>
<td>• Measurement
• Tools and technology</td>
<td>• Uses scientific inquiry skills
• Compares and measures
• Uses tools and other technology to perform tasks</td>
<td>• Active Participation
• Focused attention</td>
</tr>
<tr>
<td>Experimenting</td>
<td>• Experimenting, predicting, and drawing conclusions
• Data Analysis</td>
<td>• Uses scientific inquiry skills
• Shows flexibility and inventiveness in thinking</td>
<td>• Evaluation
• Prediction/experimentation</td>
</tr>
<tr>
<td>Problem Solving</td>
<td>• Problem solving with materials
• Conflict Resolution</td>
<td>• Uses scientific inquiry skills
• Attends and engages
• Solves problems
• Persists</td>
<td>• Problem Solving
• How and Why Questions
• Integrates with Previous Knowledge
• Hints
• Assistance
• Focused attention</td>
</tr>
<tr>
<td>Using Tools</td>
<td>• Measurement
• Problem Solving with Materials
• Tools and technology</td>
<td>• Uses scientific inquiry skills
• Uses tools and other technology to perform tasks</td>
<td>• Range of auditory, visual, and movement activities
• Hands on opportunities
• Focused attention</td>
</tr>
<tr>
<td>Communication</td>
<td>• Speaking
• Listening and Comprehension
• Reflection</td>
<td>• Uses an expanding expressive vocabulary
• Speaks clearly
• Follows directions
• Tells about another time or place</td>
<td>• Peer Conversations
• Contingent responding
• Back and forth exchanges
• Encourages student talk
• Elicits ideas and/or perspectives
• Specific Feedback
• Variety of words</td>
</tr>
</tbody>
</table>
Getting Started: St Louis Science Center

- Why did you want to get started?
 - Contacted by local Head Start initially
 - Growing our early childhood initiative
- What services do you provide?
 - Classroom visits/Field Trips
 - Teacher PD workshops
 - Parent workshops
 - Family experiences
- Funding?
 - Grant funded
 - Fee based
Getting Started: St Louis Science Center

- Who is involved from Head Start?
 - Curriculum Coordinator
 - Site Supervisors
 - HS Director

- Who is involved from your museum organization?
 - Education
 - Development
 - Marketing
Maintaining and Sustaining Partnerships: Maryland Science Center

- Goals of the Partnership
- Communication with your partners
 - Figure out what works for them
- Evaluation
 - Useful for grants - data speaks
- Funding
 - Without our long term commitment to our Head Start Partners, we would have never received an endowment for the program
- Institutional Support
 - Kept the program going for years
Challenges and Solutions

- Who do you initially make contact with?
- Staff turnover
- First year blahs.
- Scheduling
Implementation Guide Questions:
Desired Impacts and Capacity
Break

C E S L

Collaborative for Early Science Learning
Planning Teacher Training Programs

- Common Goals
 - Inspire teachers to make science part of their daily routines, activities, and interactions in the classroom.
 - Help them to plan and provide developmentally appropriate early learning experiences in science.
 - Engage teachers in hands-on activities that allow them to experience exploration and discovery much the way children do.
 - Collaborate with each other to discuss adaptations and extensions to the activities in their own classrooms.
 - Encourage teachers to think of themselves as lifelong learners of math and science.
Planning Teacher Training Programs

▶ Teacher Training Components

▶ Audience
 ▶ Same organization or different?
 ▶ Ages participants work with
 ▶ Types of programs (home day care, preschool, district, Head Start, etc.)
 ▶ Number of Participants
 ▶ Funding
Planning Teacher Training Programs

- Teacher Training Components
 - Logistics
 - "One shot" workshops or ongoing?
 - Frequency of workshops during the year
 - Length of workshops
 - Content/activities
 - Location of training
Planning Teacher Training Programs

- **Common Components**

<table>
<thead>
<tr>
<th>PD Component</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sign-in and nametags</td>
<td></td>
</tr>
<tr>
<td>Snacks</td>
<td></td>
</tr>
<tr>
<td>Presenter and participant introductions</td>
<td></td>
</tr>
<tr>
<td>Review workshop goals/agenda</td>
<td></td>
</tr>
<tr>
<td>Ice breaker game</td>
<td></td>
</tr>
<tr>
<td>Highlight Science Process Skills</td>
<td></td>
</tr>
<tr>
<td>Hands-on science activities (modeled and experienced as would be done with children)</td>
<td></td>
</tr>
<tr>
<td>Small group discussions</td>
<td></td>
</tr>
<tr>
<td>Sharing related research</td>
<td></td>
</tr>
<tr>
<td>Connections to state guidelines, Head Start frameworks etc.</td>
<td></td>
</tr>
<tr>
<td>Workshop evaluation/feedback</td>
<td></td>
</tr>
<tr>
<td>Provide curriculum resources and take-home materials</td>
<td></td>
</tr>
<tr>
<td>Other?</td>
<td></td>
</tr>
</tbody>
</table>
Planning Teacher Training Programs

- Hands on Activities!
 - Snails observations
 - Measuring exploration
 - Predictions with chemical reactions
Planning Teacher Training Programs

What questions might you use to guide teacher conversation?

Examples:

- What process skills do you notice?
- What adaptations can you make for specific ages?
- How does this activity support preschool standards?
Planning Teacher Training Programs

- Activity Review
 - What process skills do you notice?
 - What questions would you use to guide teacher conversation?
 - What adaptations can you make for specific ages?
 - How does this connect to preschool standards?
Implementation Guide Questions:
Planning a Teacher Training Program

Collaborative for Early Science Learning
Break
Planning Family Engagement Programs

- Common Goals
 - Engage families in their children’s learning.
 - Teach families about what science looks like for their young children.
 - Help families understand science is simple and already all around us.
 - Teach parents to recognize when their children are doing science.
 - Give families the tools to do science activities with their children.
Program Components

- Defined Objectives
- Funding
- Point Person
- Staffing
- Attendance
- Scheduling
- Location
- Evaluation
- Food
- Marketing
- Engaging Content
- Materials
Connections: Parent Play Workshop - Bay Area Discovery Museum

Connections Program

- Currently 43 schools, 90 classrooms, more than 1700 students
- Outreach & Field Trips with federally subsidized preschools
- Parent Play Workshop (PPW) is within this long term, multi touch point partnership program
- Funding: museum raises funds through grants, foundations, and individual donors
Connections: Parent Play Workshop - Bay Area Discovery Museum

Logistics

- **Location**
 - At school: in classroom, all purpose room, etc.
- **Audience**
 - Parents/Caregivers as adult learners
 - Anywhere from 5-40 people
 - 1-2 museum staff facilitating, often translated
- **Frequency & Length**
 - Offered to each partner site once a school year
 - 60-90 minutes
Family Engagement Workshops - Sciencenter

Logistics

- **Audience**
 - Head Start families (adults & children)
 - ~100 people

- **Frequency & Length**
 - Nine events a year; 1.5 hours each

- **Location**
 - On-site at museum
 - Transportation provided

- **Staffing**
 - 2 to 3 educators

- **Funding**
 - IMLS Science From the Start, donors, Tompkins Community Action

- **Food**
 - Dinner provided
Activities
- Teachers run activities, encourage adults to facilitate for children
- Complement PD curriculum
- Easy, use simple materials

Wrap Up
- Gather everyone in amphitheater for story and science experiment
- Helps signify end of event.
Frost Science

- Two primary strategies to engage Head Start families:
 - Workshops for parent leaders
 - Family Science Days

- Based on Early Childhood Hands-On Science (ECHOS®)
Parent Leader Workshops @ Frost Science

- Play is Learning
- Science and Math in Your Pocket
- Parent Café: Conversations to Keep Families Strong
- Learning Resources at the Science Museum
- Parents try out and take home science activities
- Families try out activities during Family Day
Family Days @ Frost Science

- **Audience**
 - Children and families

- **Frequency & Length**
 - Once a year per center
 - Half day on Saturday or Sunday

- **Location**
 - Frost Science; bus provided

- **Special Feature**
 - ECHOS ambassadors - high school students from Upward Bound Math/Science program – bilingual, from same communities
Hands-on Stations

Sciencenter

- Family Engagement Workshops

Frost Science

- Workshops for parent leaders
- Family Science Days

Bay Area Discovery Museum

- Parent-Play Workshop
Implementation Guide Questions: Planning a Family Engagement Program

CESL

Collaborative for Early Science Learning
Implementation Guide Chart: Next Steps
Resources & Museum Tools

Engage. Educate. Empower.
Families, teachers and other professionals are invited to use and share our hands-on activities guides and professional materials. The Sciencenter will continuously add relevant information to this page.

Resources for Kids & Families

<table>
<thead>
<tr>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry Activities</td>
</tr>
</tbody>
</table>

Resources for Educators

<table>
<thead>
<tr>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Trips Supplemental Activities</td>
</tr>
<tr>
<td>Chemistry Activity Lesson Plans</td>
</tr>
</tbody>
</table>

Resources for Museum Professionals

Collaborative for Early Science Learning

Resources to support museums partnering with local Head Start programs to provide teacher professional development and family engagement focusing on early childhood science.

<table>
<thead>
<tr>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Launch a Collaboration</td>
</tr>
<tr>
<td>Working with Head Start Teachers</td>
</tr>
<tr>
<td>Working with Head Start Families</td>
</tr>
</tbody>
</table>
Thank you!

This project was made possible in part by the Institute of Museum and Library Services